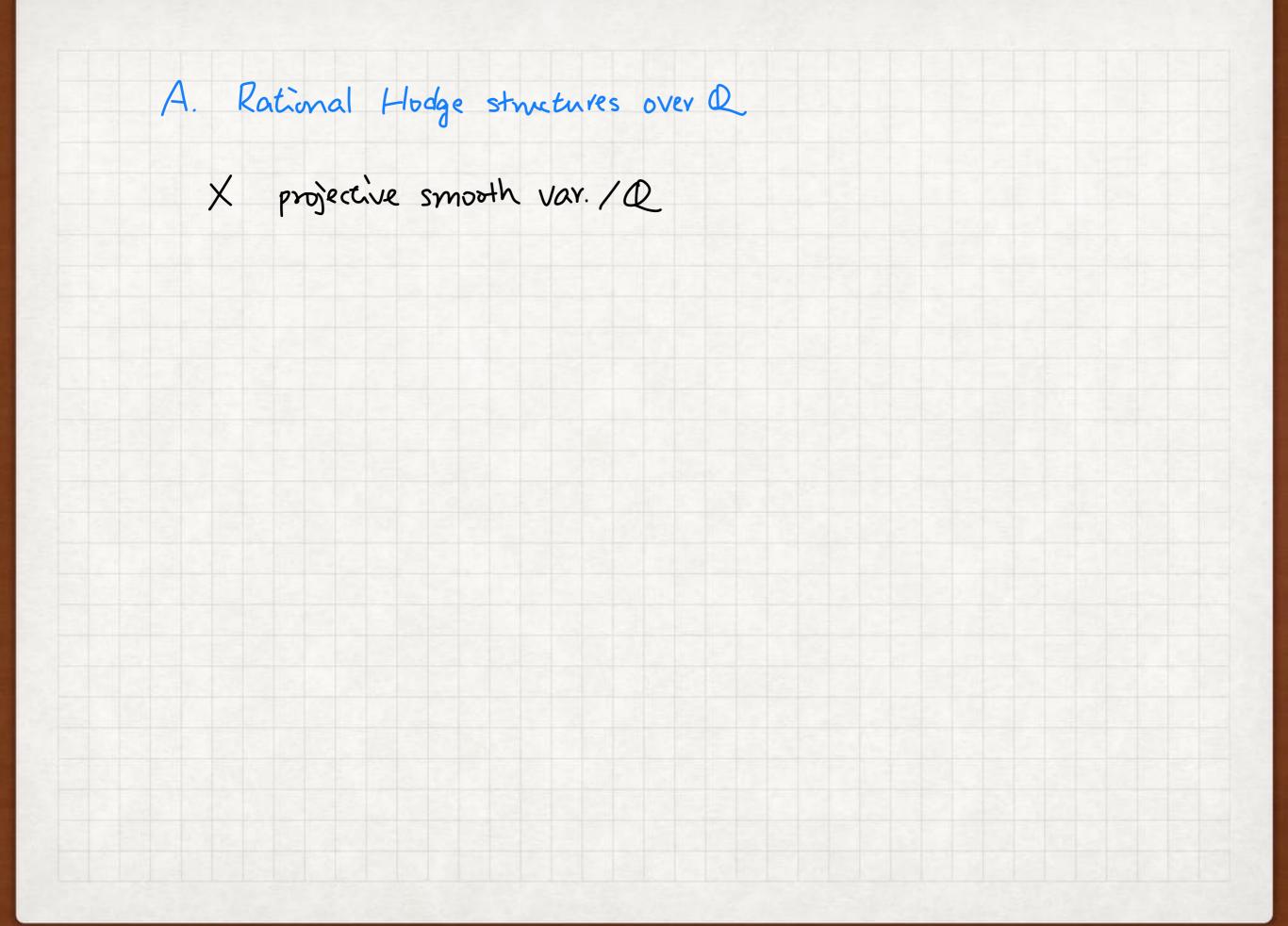
MOMENTS OF AIRY FUNCTIONS AS ULTERIOR MOTIVES

JENG-DAW YU @NTU

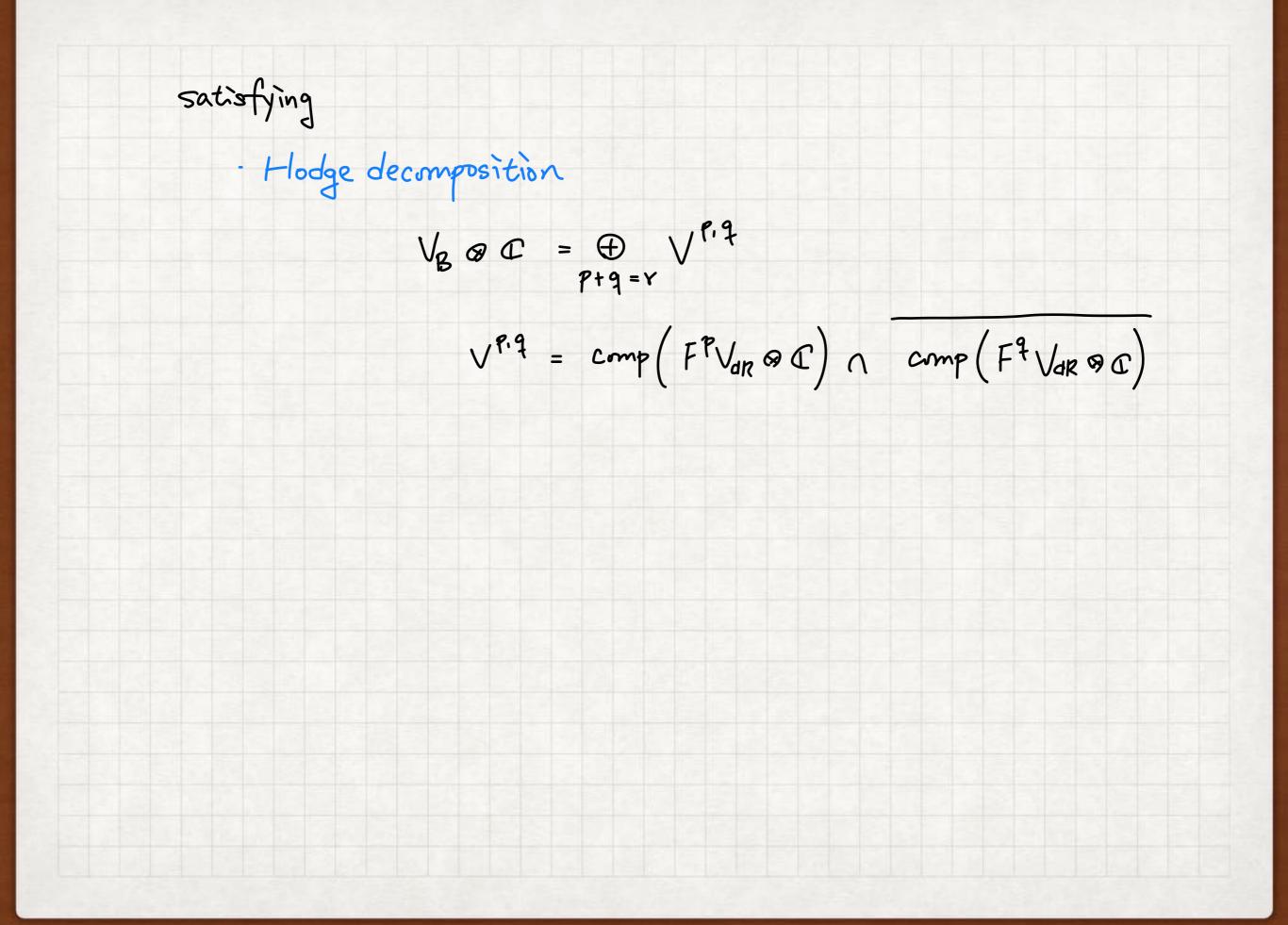
2021 TMS ANNUAL MEETING

A.	P	at.		L	Ind	20	ch		t.	10	•	~~//	v	0								
/ \.		uni	~1	ſ		3	21	·vu			5											



A. Rational Hodge structures over Q X projective smooth var. / R $\vee = H^{r}(\times)$ V = (VB, VdR, Comp) $V_{B} = H_{sing}(X(4), Q)$ $V_{dR} = H_{dR}^{r} (X/Q)$ yields a pure QHS/Q of weight r

A. Rational Hodge structures over Q X projective smooth var. /R $\vee = H^{r}(\times)$ V = (VB, Var, comp) VB = Hsing (X(4), Q) $V_{dR} = H_{dR}^{r}(X/Q)$ yields a pure QHS/Q of weight r VB · Q-V.S. (Var, F^P) : Filtered Q-v.s. comp: Var QC ~> VBQC companison isomorphism



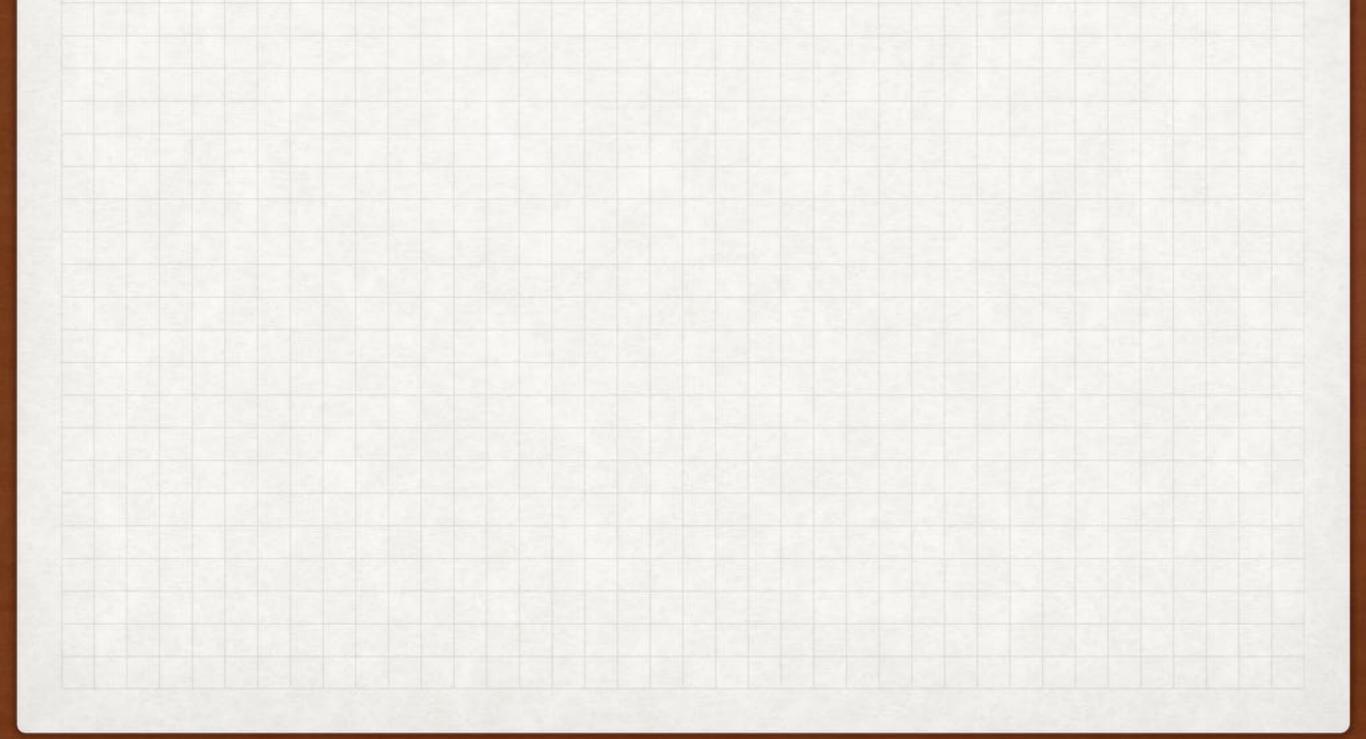
satisfying
• Hodge decomposition

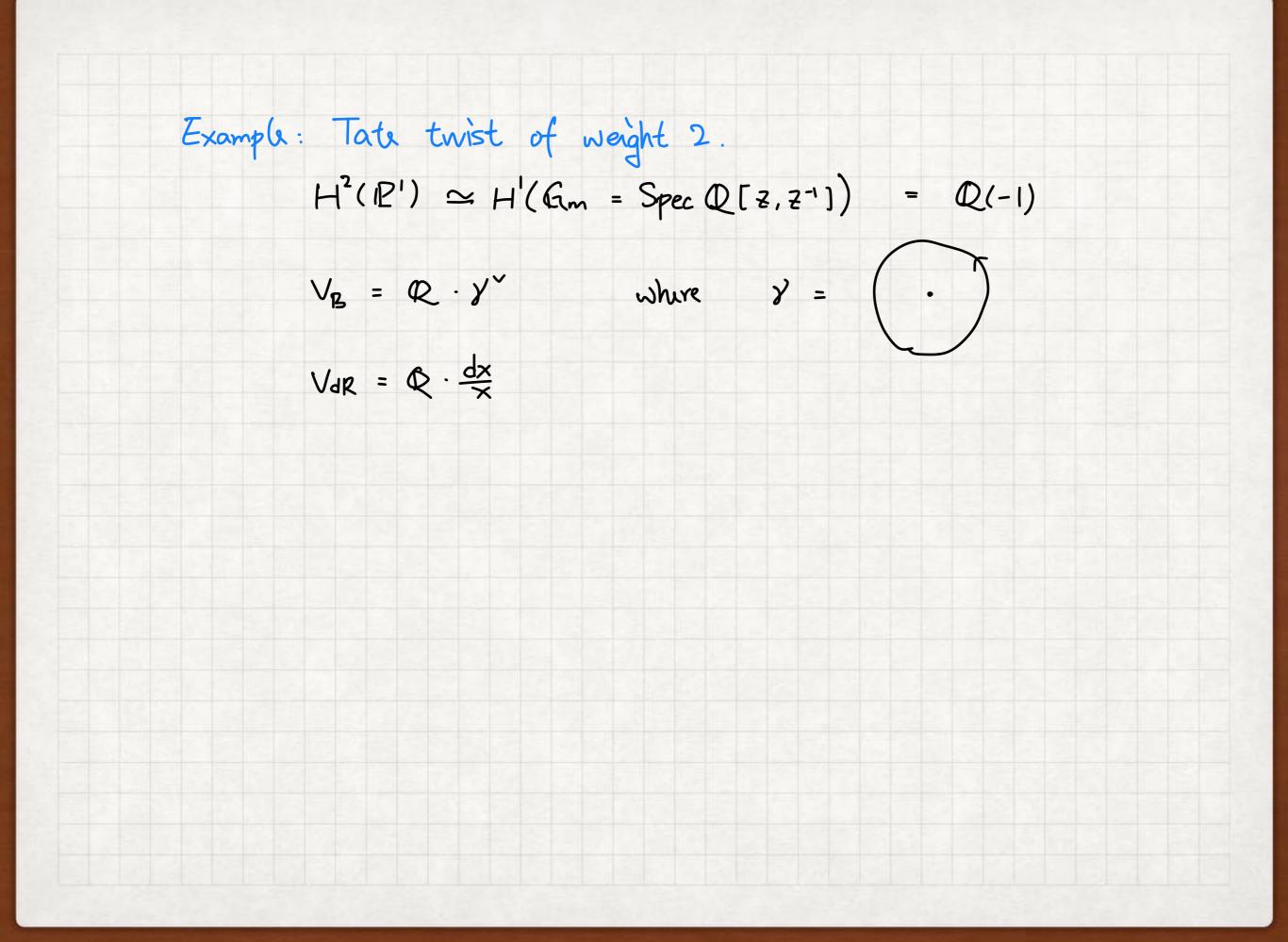
$$V_{g} \otimes C = \bigoplus_{p+q=r} \bigvee^{p,q}$$

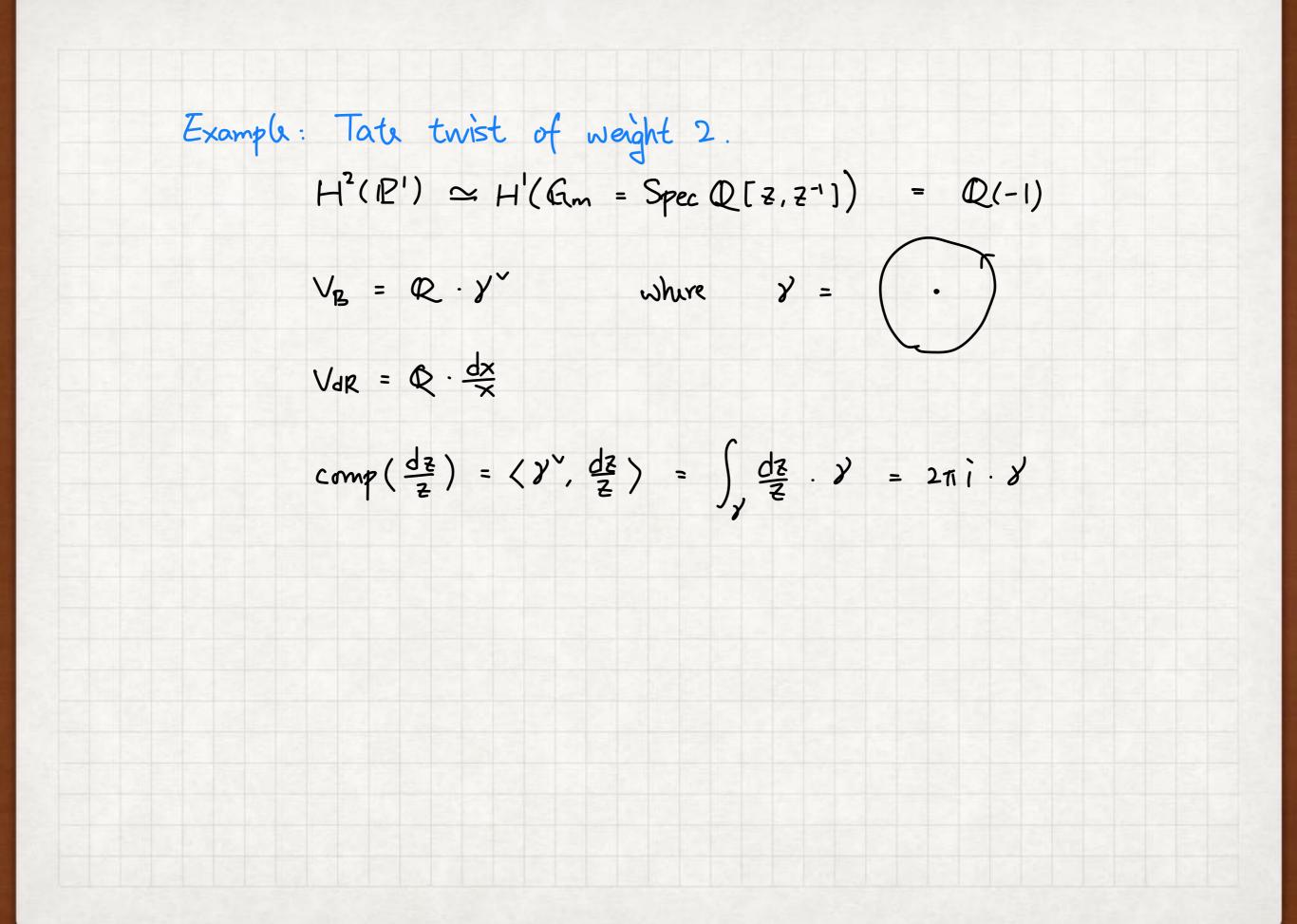
 $\bigvee^{p,q} = comp(F^{p}V_{dR} \otimes C) \cap comp(F^{q}V_{dR} \otimes C)$
• Compatibility of complex conjugation
 $V_{dR} \otimes C \cong V_{g} \otimes C$
 $G = G$
 $G = G$

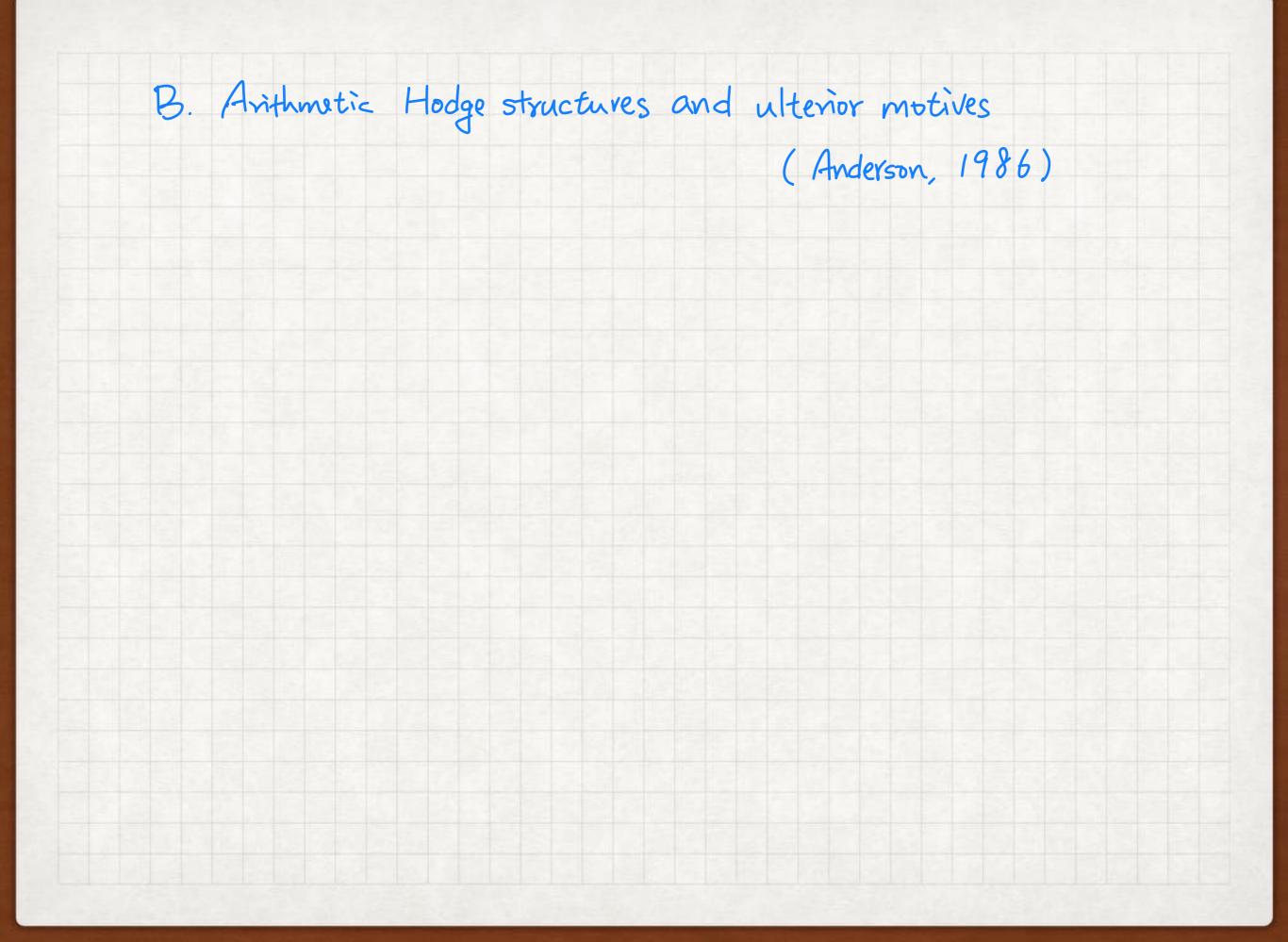
Example: Tate twist of weight 2.

$H^{2}(\mathbb{P}') \simeq H'(\mathbb{G}_{m} = \operatorname{Spec} \mathbb{Q}[\overline{z}, \overline{z}^{-1}]) = \mathbb{Q}(-1)$









B. Anithmetic Hodge structures and ulterior motives (Anderson, 1986) - AHS of weight r

B. Arithmetic Hodge structures and ulterior motives

(Anderson, 1986)

- AHS of weight r

W = (WB, WdR, Comp)

satisfies the same conditions, except that

B. Arithmetic Hodge structures and ulterior motives

(Anderson, 1986)

- AHS of weight r

satisfies the same conditions, except that

$$W_{B} \otimes \mathbb{C} = \bigoplus W^{p,q}$$

$$p + q = r$$

$$p \cdot q \in \mathbb{Q}$$

Difere	or motive	2 1										
- 01001		e En	^									

- Ulterior motive Em

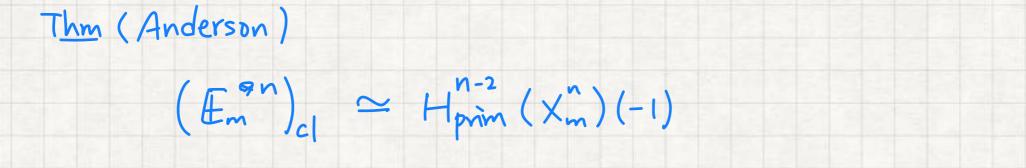
 $(\underline{E}_{m})_{B} = \{f: \{0, --, m-1\} \rightarrow \mathbb{Q} \mid \Sigma f(i) = 0\}$

 $(\underline{E}_{m})_{dR} = \sum_{a=1}^{m-1} \mathcal{R} \cdot \Gamma_{a}, \qquad \Gamma_{a}(i) = \zeta_{m}^{-ai} \Gamma(1-\frac{a}{m})$

- Ulterior motive Em

$$(\underline{E}_{m})_{\mathsf{B}} = \{ f: \{0, --, m-1\} \rightarrow \mathbb{Q} \mid \Sigma f(i) = 0 \}$$

$$(\underline{E}_{m})_{dR} = \sum_{a=1}^{m-1} \mathcal{R} \cdot \underline{\Gamma}_{a}, \qquad \overline{\Gamma}_{a}(i) = \zeta_{m}^{-ai} \Gamma(1-\underline{a})$$

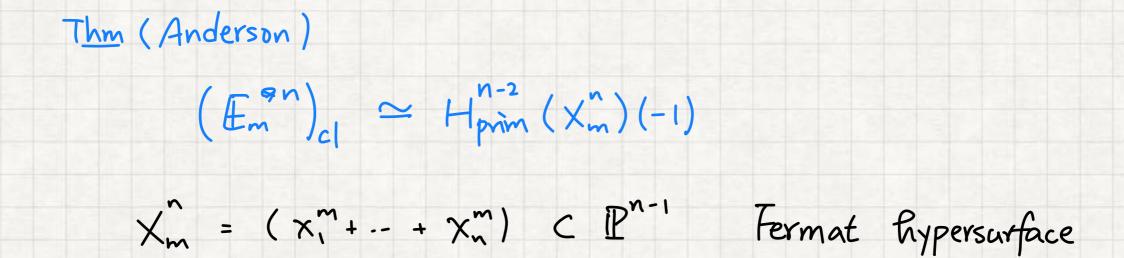


 $\chi_{m}^{n} = (\chi_{1}^{m} + ... + \chi_{n}^{m}) \subset \mathbb{P}^{n-1}$ Fermat hypersurface

- Ulterior motive Em

$$(\underline{E}_{m})_{\mathsf{R}} = \{ f: \{0, -, m-1\} \rightarrow \mathbb{Q} \mid \Sigma f(i) = 0 \}$$

$$(\underline{E}_{m})_{dR} = \sum_{a=1}^{m-1} \mathcal{R} \cdot \underline{\Gamma}_{a}, \qquad \overline{\Gamma}_{a}(i) = \sum_{m}^{-ai} \Gamma(1 - \underline{a})$$



So periods of
$$X_m^n$$
 contains $(2\pi i)^{i}TT S_m^{-a;b_j} \Gamma(1-\frac{a}{m})$
$$\sum_{i=1}^{m-1} a_i = n = \sum_{j=1}^{m-1} b_j$$

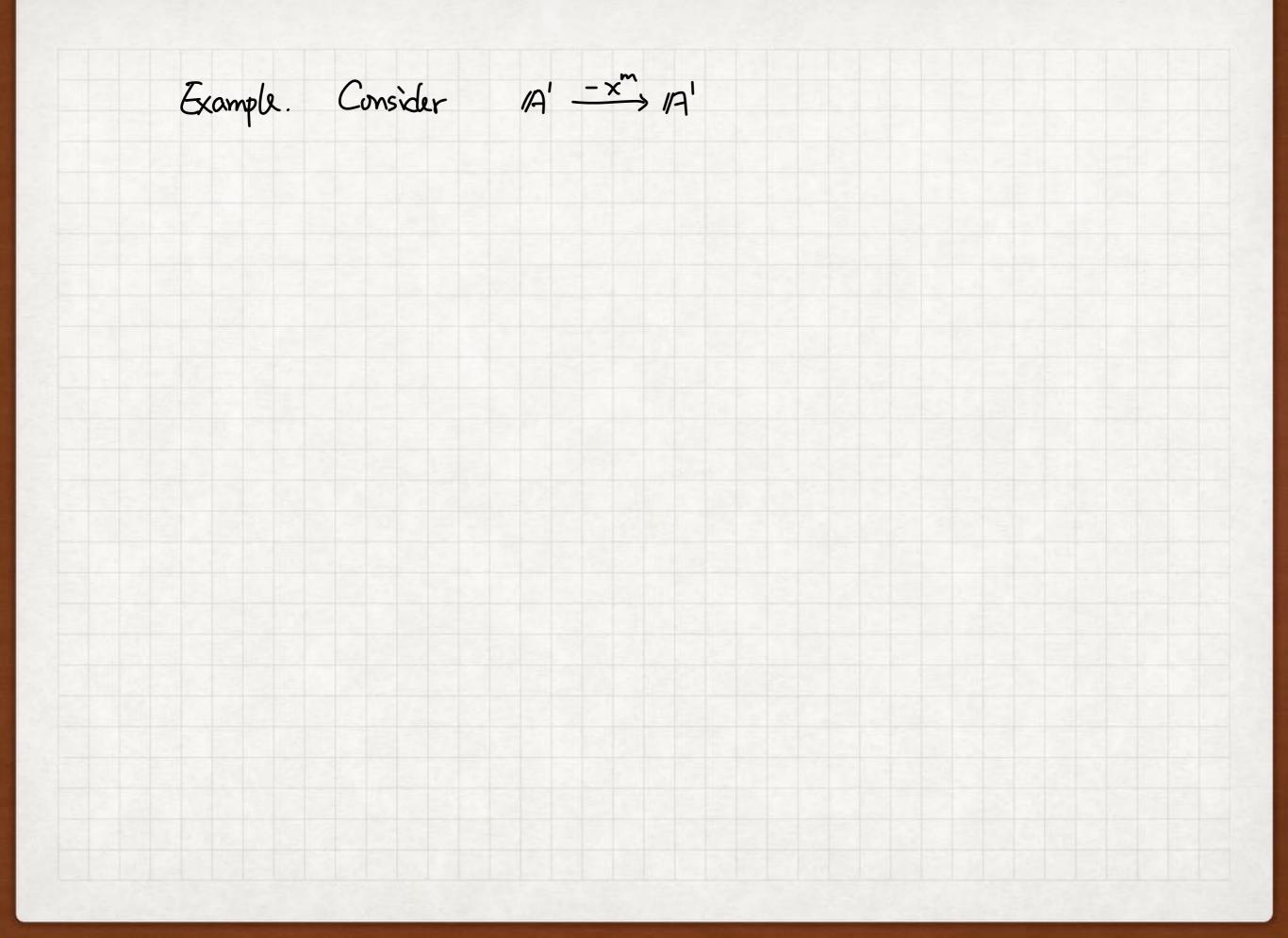
С.	Τ.,	(00.	1		1-0	L	0.0.0											
C.	TA	rega		100	ge	-17	UUY,	3										

C. Iwegular Hodge theory Given X I, R /R , X quasi-projective, smooth

C. Inregular Hodge theory Given X I, R /R . X quosi-projective, smooth $V_{dR} = H_{dR}^{r}(X, F) = H_{1}^{r}(X, O_{X} \xrightarrow{d+dF} \Omega'_{X} \longrightarrow \cdots)$ VB = rapid decay cycles for ef on X(C) / boundary

C. Irregular Hodge theory Given X I, R /R . X quosi-projective, smooth $V_{dR} = H_{dR}^{r}(X, f) = H^{r}(X, O_{X} \xrightarrow{d+df} \Omega'_{X} \longrightarrow \cdots)$ VB = rapid decay cycles for ef on X(C) / boundary $\bigvee_{\partial R} \oslash \mathbb{C} \xrightarrow{\sim} \bigvee_{\mathcal{B}} \oslash \mathbb{C}$ Hien (2009). via integration.

C. Iwegular Hodge theory Given X I R /R . X quasi-projective, smooth $V_{dR} = H_{dR}^{r}(X, f) = H_{1}^{r}(X, O_{X} \xrightarrow{d+df} \Omega'_{X} \longrightarrow \cdots)$ = rapid decay cycles for ef on X(C) / boundary Vg $\bigvee_{\partial R} \oslash \mathbb{C} \xrightarrow{\sim} \bigvee_{\mathcal{B}} \oslash \mathbb{C}$ Hien (2009). via integration Deligna, Esnault-Sabbah-Y., Katzarkov-Kontsevich-Ponter, Mochizuki, There is the inegular Hodge Filtration on Var.



Example. Consider
$$A' \xrightarrow{-\infty} A'$$

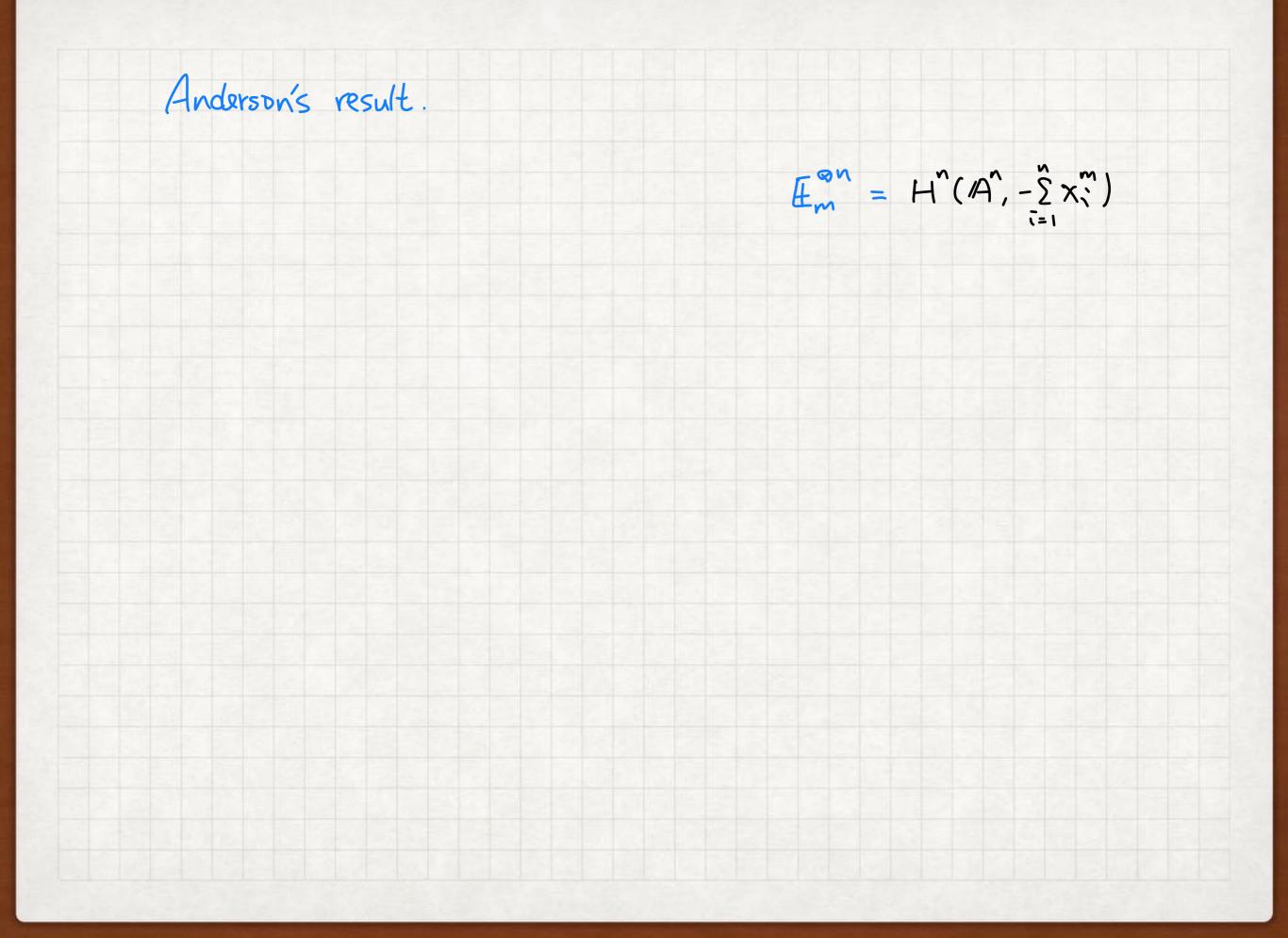
 $V_{dR} = H'_{dR}(A', -x^{m}) = \langle J_{z} = x^{2} dx \rangle_{i=1}^{m-1}$
 $F^{1-\frac{1}{m}} V_{dR} = \langle J_{1}, -, J_{z} \rangle$

Example. Consider $A' \xrightarrow{-x^m} A'$ $V_{dR} = H'_{dR}(R_1, -x^m) = \langle J_{:} = x^{-1} dx \rangle_{i=1}^{m-1}$ $F^{I-\frac{1}{m}} V_{dR} = \langle \mathcal{J}_{1}, --, \mathcal{J}_{2} \rangle$ $V_{B}^{v} = H_{1}^{vd}(IA', x^{m})$ SMR+@ex

Example. Consider 1A' - xm 1A' $V_{dR} = H'_{dR}(R', -x^{m}) = \langle J : = x^{i-1} dx \rangle_{i=1}^{m-1}$ $F^{I-\frac{1}{m}} V_{dR} = \langle \mathcal{V}_{1}, - \cdot, \mathcal{V}_{2} \rangle$ $V_{B} = H_{1}^{rd}(IA', x^{m}) = \langle \alpha := (m \cdot 3\hat{k}R_{+} - \sum_{j=0}^{m-1} \hat{k}R_{+}) \otimes e^{-x^{m}} \rangle$ sin $R_+ \otimes e^{x}$ with $\sum_{i=0}^{m-1} \alpha_i = 0$

Example. Consider $A' \xrightarrow{-x^m} A'$ $V_{dR} = H'_{dR}(R', -x') = \langle J = x'' dx \rangle_{dR}^{m-1}$ $F^{I-\frac{1}{m}} V_{dR} = \langle \mathcal{J}_{1}, - , \mathcal{J}_{2} \rangle$ $V_{B}^{\nu} = H_{1}^{rd}(IA^{l}, x^{m}) = \langle \alpha := (m \cdot \zeta_{m}^{\nu} R_{+} - \sum_{j=0}^{m-1} \zeta_{m}^{j} R_{+}) \otimes e^{-x^{m}} \rangle$ $s_{m}^{2}R_{+} \otimes e^{x}$ with $\sum_{i=0}^{m-1} \alpha_{i} = 0$ $\langle \alpha_i, v_j \rangle = \zeta_m^{ij} \Gamma(\frac{j}{m})$

Example. Consider 1A' - xm 1A' $V_{dR} = H_{dR}(IA', -x^{m}) = \langle J := x^{-1} dx \rangle$ F1- WdR = (J1, --, J;) $V_{B}^{\nu} = H_{1}^{vd}(IA^{l}, x^{m}) = \langle \alpha := (m \cdot \zeta_{m}^{\nu} R_{+} - \sum_{j=0}^{m-1} \zeta_{m}^{j} R_{+}) \otimes e^{-x^{m}} \rangle$ $s_{m}^{2}R_{+} \otimes e^{-x^{m}}$ with $\sum_{i=0}^{m-1} \alpha_{i} = 0$ $\langle \alpha_i, v_j \rangle = 5^{ij} \Gamma(\frac{1}{m})$ One identifies this with Em via Σf(i) = D (+) Σf(i)·SmiR+ @e-x ra es Vm-a



Anderson's result. $O \rightarrow H^{k+1}(A^{n+1}, -\overset{\circ}{\Sigma} \times \overset{\circ}{,}) \rightarrow H^{n+1}(G_{n} \times A^{n}, -\overset{\circ}{\Sigma} \times \overset{\circ}{,}) \rightarrow H^{\circ}(A^{\circ}, -\overset{\circ}{\Sigma} \times \overset{\circ}{,})(-1) \rightarrow O$

Anderson's result. $O \rightarrow H^{k+1}(A^{n+1}, -\overset{\circ}{\Sigma} \overset{\circ}{X}^{m}) \rightarrow H^{n+1}(G_{m} \times A^{n}, -\overset{\circ}{\Sigma} \overset{\circ}{X}^{m}) \rightarrow H^{\circ}(A^{\circ}, -\overset{\circ}{\Sigma} \overset{\circ}{X}^{m})(-1) \rightarrow O$ $x_0 = t$ $x_1 = ty_1$ $H^{n+1}(G_m \times IA^n, -t^m(I + \hat{\Sigma}y^m))$

Anderson's result. $O \rightarrow H^{k+1}(A^{n+1}, -\overset{\circ}{\Sigma} \times \overset{\circ}{,}) \rightarrow H^{n+1}(G_{m} \times A^{n}, -\overset{\circ}{\Sigma} \times \overset{\circ}{,}) \rightarrow H^{\circ}(A^{n}, -\overset{\circ}{\Sigma} \times \overset{\circ}{,})(-1) \rightarrow O$ $x_o = t$ $x_i = ty_i$ $H^{n+1}(G_m \times IA^n, -t^m(I + \hat{\Sigma}y^m))$ $H^{n+1}(G_m \times A^n, -t(1+\hat{\Sigma}y^m))$ classical part $H^{n+1}(IA^{n+1}, -t(I+\hat{\Sigma}y^{n+1}))$ $H^{n-1}(((1+\tilde{S}y_{i}^{m}))(-1))$

Anderson's result. $O \rightarrow H^{k+1}(A^{n+1}, -\overset{\circ}{\Sigma} \times \overset{\circ}{,}) \longrightarrow H^{n+1}(G_{m} \times A^{n}, -\overset{\circ}{\Sigma} \times \overset{\circ}{,}) \rightarrow H^{\circ}(A^{n}, -\overset{\circ}{\Sigma} \times \overset{\circ}{,})(-1) \rightarrow O$ $x_o = t$ $x_i = ty_i$ $H^{n+1}(G_m \times IA^n, -t^m(I + \hat{\Sigma}y^m))$ $H^{n+1}(G_m \times A^n, -t(1+\hat{\Sigma}y^m))$ classical part $H^{n+1}(H^{n+1}), -t(H\hat{\Sigma}\hat{J}_{i}))$ $H^{n-1}(((1+\tilde{2}y_{i}^{m}))(-1))$ Finally $gr_{n}^{W} H^{n-1}((H_{\Sigma}^{N}g_{1}^{m})) \xrightarrow{\sim} H^{n-2}_{prim}(X_{m}^{n})(-1)$

Airy differential operator $\partial_2^2 - 2$ on |A'|

Airy differential operator

$$\partial_z^2 - z$$
 on A^1
which can be realized as pushforword A_i
of $d + d(\frac{1}{5}x^3 - zx)$ to A_{iz}^1

Airy differential operator

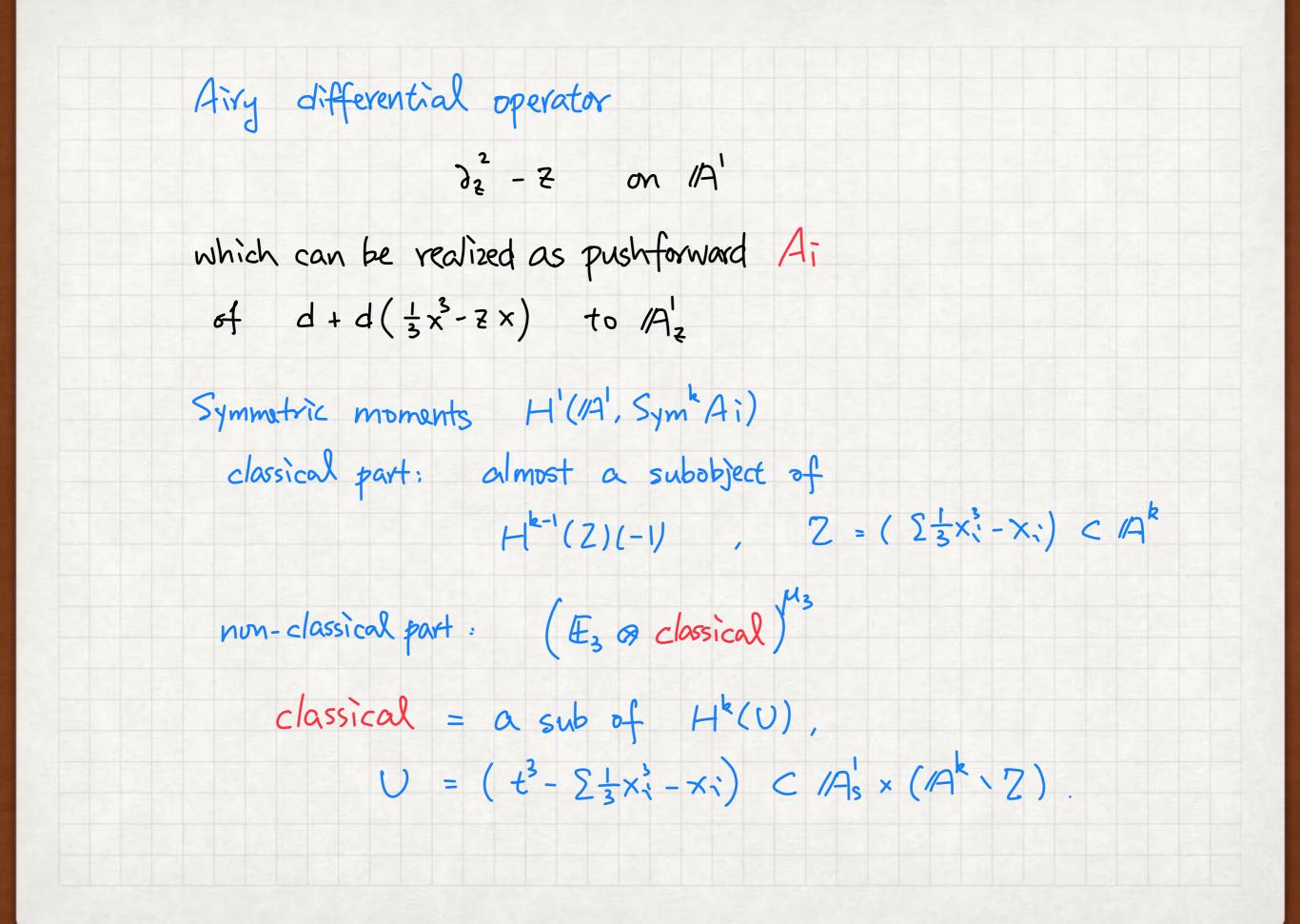
$$\partial_z^2 - z$$
 on A^1
which can be realized as pushforward A_i

of
$$d + d(\frac{1}{3}x - \epsilon x)$$
 to M_{ϵ}

Symmetric moments H'(114', Sym^kAi)

Airy differential operator

$$\partial_z^2 - z$$
 on M'
which can be realized as pushforward Ai
of $d + d(\frac{1}{3}x^3 - zx)$ to M'_z
Symmetric moments $H'(M', Sym^kAi)$
classical part: almost a subobject of
 $H^{k-1}(Z)(-1)$, $Z = (\Sigma_3^{\pm}x_1^* - X_1) < A^k$



THANK YOU